题目:超薄柔性聚合物电解质助力高效全固态锂金属电池
创新点:
锂金属电池是下一代最具前景的高能量密度存储设备之一。然而,锂金属在循环过程中产生的枝晶可刺破隔膜,引起电池短路甚至爆炸。采用固态电解质代替易燃的液态电解质可从根本上解除锂金属电池的安全隐患。其中,聚合物固态电解质具有良好的柔性、优异的加工性和电解质-电极界面相容性。然而,聚合物电解质室温电导较低、机械强度较弱,限制了其广泛应用。目前,对聚合物电解质的研究多聚焦在提高其离子电导率。离子电导率由固态电解质的离子电导对电解质厚度和面积进行标准化处理计算得到。不同固态电解质的厚度相差较大,因此,即使电导率相近,厚度的差异导致了锂离子在固态电解质中迁移距离的不同,直接影响了全固态电池电化学性能和能量密度。
近期,华中科技大学黄云辉教授和李真教授研究团队报道了一种可规模化制备的超薄柔性聚合物电解质。他们利用简单的溶剂挥发法将聚环氧乙烷(PEO)/双三氟甲烷磺酰亚胺锂(LiTFSI)聚合物电解质填充至聚乙烯隔膜的孔道内,制备了厚度仅为7.5mm的超薄复合聚合物电解质。作者采用价廉易得、高力学性能、高孔隙率的电池隔膜作为支撑体,保证了超薄固态电解质的力学强度、防止全固态电池在组装、使用过程中发生内短路。采用该超薄电解质可显著减小全固态电池的欧姆阻抗、极化现象,大幅提高全固态电池的电化学性能和能量密度。结果表明,采用该超薄固态电解质的全固态电池能够表现出优异的循环稳定性,LiFeO4电池在60oC可以10C速率快充,在30oC下的比容量可达135 mAh g-1。该固态电解质与高比能正极材料(如硫)或负极材料(如MoS2)组装成全固态锂金属电池可稳定循环。该研究工作制备的简单、高效且可量产的聚合物电解质有望推动锂金属电池的商业化进程。
相关工作以‶Ultrathin, Flexible Polymer Electrolyte for Cost-Effective
Fabrication of All-Solid-State Lithium Metal Batteries″为题发表在Advanced Energy Materials (2019, DOI: 10.1002/aenm.201902767)上,第一作者为华中科技大学材料学院学院博士后吴敬一。
关键词:全固态电池、柔性电解质、锂枝晶、高能量密度
分类:高分子复合材料、能源材料